Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 185: 108529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484612

RESUMO

The London Underground (LU) employs over 19,000 staff, some of whom are exposed to elevated concentrations of particulate matter (PM) within the network. This study quantified the occupational exposure of LU staff to subway PM and investigated the possible association with sickness absence (SA). A job exposure matrix to quantify subway PM2.5 staff exposure was developed by undertaking measurement campaigns across the LU network. The association between exposure and SA was evaluated using zero-inflated mixed-effects negative binomial models. Staff PM2.5 exposure varied by job grade and tasks undertaken. Drivers had the highest exposure over a work shift (mean: 261 µg/m3), but concentrations varied significantly by LU line and time the train spent subway. Office staff work in office buildings separate to the LU network and are unexposed to occupational subway PM2.5. They were found to have lower rates of all-cause and respiratory infection SA compared to non-office staff, those who work across the LU network and are occupational exposed to subway PM2.5. Train drivers on five out of eight lines showed higher rates of all-cause SA, but no dose-response relationship was seen. Only drivers from one line showed higher rates of SAs from respiratory infections (incidence rate ratio: 1.24, 95% confidence interval 1.10-1.39). Lower-grade customer service (CS) staff showed higher rates of all-cause and respiratory infection SA compared to higher grade CS staff. Doctor-certified chronic respiratory and cardiovascular SAs were associated with occupational PM2.5 exposure in CS staff and drivers. While some groups with higher occupational exposure to subway PM reported higher rates of SA, no evidence suggests that subway PM is the main contributing factor to SA. This is the largest subway study on health effects of occupational PM2.5 exposure and may have wider implications for subway workers, contributing to safer working environments.


Assuntos
Poluentes Atmosféricos , Exposição Ocupacional , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/análise , Londres/epidemiologia , Monitoramento Ambiental , Exposição Ocupacional/efeitos adversos
2.
EBioMedicine ; 99: 104901, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061242

RESUMO

Humans are exposed to micro-and-nano plastics (MNPs) through various routes, but the adverse health effects of MNPs on different organ systems are not yet fully understood. This review aims to provide an overview of the potential impacts of MNPs on various organ systems and identify knowledge gaps in current research. The summarized results suggest that exposure to MNPs can lead to health effects through oxidative stress, inflammation, immune dysfunction, altered biochemical and energy metabolism, impaired cell proliferation, disrupted microbial metabolic pathways, abnormal organ development, and carcinogenicity. There is limited human data on the health effects of MNPs, despite evidence from animal and cellular studies. Most of the published research has focused on specific types of MNPs to assess their toxicity, while other types of plastic particles commonly found in the environment remain unstudied. Future studies should investigate MNPs exposure by considering realistic concentrations, dose-dependent effects, individual susceptibility, and confounding factors.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos , Proliferação de Células , Metabolismo Energético , Inflamação
3.
BJPsych Open ; 9(4): e120, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403494

RESUMO

BACKGROUND: Poor air quality is associated with poor health. Little attention is given to the complex array of environmental exposures and air pollutants that affect mental health during the life course. AIMS: We gather interdisciplinary expertise and knowledge across the air pollution and mental health fields. We seek to propose future research priorities and how to address them. METHOD: Through a rapid narrative review, we summarise the key scientific findings, knowledge gaps and methodological challenges. RESULTS: There is emerging evidence of associations between poor air quality, both indoors and outdoors, and poor mental health more generally, as well as specific mental disorders. Furthermore, pre-existing long-term conditions appear to deteriorate, requiring more healthcare. Evidence of critical periods for exposure among children and adolescents highlights the need for more longitudinal data as the basis of early preventive actions and policies. Particulate matter, including bioaerosols, are implicated, but form part of a complex exposome influenced by geography, deprivation, socioeconomic conditions and biological and individual vulnerabilities. Critical knowledge gaps need to be addressed to design interventions for mitigation and prevention, reflecting ever-changing sources of air pollution. The evidence base can inform and motivate multi-sector and interdisciplinary efforts of researchers, practitioners, policy makers, industry, community groups and campaigners to take informed action. CONCLUSIONS: There are knowledge gaps and a need for more research, for example, around bioaerosols exposure, indoor and outdoor pollution, urban design and impact on mental health over the life course.

4.
Clin Transl Allergy ; 13(6): e12252, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37357550

RESUMO

Allergic airway disease (AAD) is a collective term for respiratory disorders that can be exacerbated upon exposure to airborne allergens. The contribution of fungal allergens to AAD has become well established over recent years. We conducted a comprehensive review of the literature using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to better understand the mechanisms involved in the allergic response to fungi in airway epithelia, identify knowledge gaps and make recommendations for future research. The search resulted in 61 studies for final analysis. Despite heterogeneity in the models and methods used, we identified major pathways involved in fungal allergy. These included the activation of protease-activated receptor 2, the EGFR pathway, adenosine triphosphate and purinergic receptor-dependent release of IL33, and oxidative stress, which drove mucin expression and goblet cell metaplasia, Th2 cytokine production, reduced barrier integrity, eosinophil recruitment, and airway hyperresponsiveness. However, there were several knowledge gaps and therefore we recommend future research should focus on the use of more physiologically relevant methods to directly compare key allergenic fungal species, clarify specific mechanisms of fungal allergy, and assess the fungal allergy in disease models. This will inform disease management and future interventions, ultimately reducing the burden of disease.

5.
Toxicol Res (Camb) ; 11(5): 709-710, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36337254
6.
Access Microbiol ; 4(1): 000320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252756

RESUMO

Vegetation complexity is potentially important for urban green space designs aimed at fostering microbial biodiversity to benefit human health. Exposure to urban microbial biodiversity may influence human health outcomes via immune training and regulation. In this context, improving human exposure to microbiota via biodiversity-centric urban green space designs is an underused opportunity. There is currently little knowledge on the association between vegetation complexity (i.e. diversity and structure) and soil microbiota of urban green spaces. Here, we investigated the association between vegetation complexity and soil bacteria in urban green spaces in Bournemouth, UK; Haikou, China; and the City of Playford, Australia by sequencing the 16S rRNA V4 gene region of soil samples and assessing bacterial diversity. We characterized these green spaces as having 'low' or 'high' vegetation complexity and explored whether these two broad categories contained similar bacterial community compositions and diversity around the world. Within cities, we observed significantly different alpha and beta diversities between vegetation complexities; however, these results varied between cities. Rare genera (<1% relative abundance individually, on average 35% relative abundance when pooled) were most likely to be significantly different in sequence abundance between vegetation complexities and therefore explained much of the differences in microbial communities observed. Overall, general associations exist between soil bacterial communities and vegetation complexity, although these are not consistent between cities. Therefore, more in-depth work is required to be done locally to derive practical actions to assist the conservation and restoration of microbial communities in urban areas.

7.
Sci Total Environ ; 818: 151716, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34800445

RESUMO

Fungal spores make up a significant proportion of organic matter within the air. Allergic sensitisation to fungi is associated with conditions including allergic fungal airway disease. This systematic review analyses outdoor fungal spore seasonality across Europe and considers the implications for health. Seventy-four studies met the inclusion criteria, the majority of which (n = 64) were observational sampling studies published between 1978 and 2020. The most commonly reported genera were the known allergens Alternaria and Cladosporium, measured in 52 and 49 studies, respectively. Both displayed statistically significant increased season length in south-westerly (Mediterranean) versus north-easterly (Atlantic and Continental) regions. Although there was a trend for reduced peak or annual Alternaria and Cladosporium spore concentrations in more northernly locations, this was not statistically significant. Peak spore concentrations of Alternaria and Cladosporium exceeded clinical thresholds in nearly all locations, with median peak concentrations of 665 and 18,827 per m3, respectively. Meteorological variables, predominantly temperature, precipitation and relative humidity, were the main factors associated with fungal seasonality. Land-use was identified as another important factor, particularly proximity to agricultural and coastal areas. While correlations of increased season length or decreased annual spore concentrations with increasing average temperatures were reported in multi-decade sampling studies, the number of such studies was too small to make any definitive conclusions. Further, up-to-date studies covering underrepresented geographical regions and fungal taxa (including the use of modern molecular techniques), and the impact of land-use and climate change will help address remaining knowledge gaps. Such knowledge will help to better understand fungal allergy, develop improved fungal spore calendars and forecasts with greater geographical coverage, and promote increased awareness and management strategies for those with allergic fungal disease.


Assuntos
Microbiologia do Ar , Monitoramento Ambiental , Alternaria , Europa (Continente) , Estações do Ano , Esporos Fúngicos
9.
Ecohealth ; 18(3): 315-330, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34089413

RESUMO

Soil microbes are important for public health. Increasing urbanisation is adversely affecting soil microbiota, which may be contributing to the global rise of immune-related diseases. Fungi are key components of urban environments that can be negatively impacted by altered land-use, land-management and climate change, and are implicated in the development and exacerbation of non-communicable diseases such as allergy, asthma and chronic inflammatory conditions. Fungal metagenomics is building knowledge on fungi within different environments (the environmental mycobiome), fungi on and within the human body (the human mycobiome), and their association with disease. Here, we demonstrate the added value of a multi-region metabarcoding approach to analyse soil mycobiomes from five urban greenspaces (lawns, parklands, bareground, young forest and old forest). While results were comparable across the three regions (ITS1, ITS2 and LSU), each identified additional fungal taxa that were unique to the region. Combining the results therefore provided a more comprehensive analysis across all fungal taxonomic ranks, identifying statistically significant differences in the fungal composition of the five soil types. Assignment of fungal taxa into ecological guilds revealed those differences of biological relevance to public health. The greatest differences were between the soil mycobiome of lawns and forests. Of most concern was the significant increase in the known human allergens Alternaria, Bipolaris, Cladosporium and Fusarium within urban lawn and parkland vs forest soils. By improving our understanding of local variations in fungal taxa across urban greenspaces, we have the potential to boost the health of local residents through improved urban planning.


Assuntos
Microbiologia do Solo , Solo , Florestas , Fungos , Humanos , Parques Recreativos , Reino Unido
10.
Int J Hyg Environ Health ; 222(3): 364-386, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876873

RESUMO

BACKGROUND: Rapid population growth and urbanisation around the world has led to increasing waste generation rates. Composting of organic waste in large-scale facilities is part of a growing trend in the UK, and elsewhere, to better manage and re-use the organic waste. However, composting inevitably generates bioaerosols, which have been associated with human health effects. In 2015, we reported that there was some, albeit limited, qualitative evidence linking bioaerosol emissions from composting facilities to poor respiratory health in nearby residents. However, the limited evidence precluded any quantitative assessment. Since then, the number of operational industrial-scale composting facilities in England has increased by 9% - nearly twice the growth from 2012 to 2014. At the same time, rapid urbanisation has led to expansion of city borders with more people living near large composting facilities and exposed to bioaerosol pollution. It is essential that regulatory authorities have access to the most up to date and accurate information. OBJECTIVE: In this update of a systematic review published in 2015, we review and summarise the evidence from more recent studies that have assessed bioaerosol exposures within and near composting facilities and their associated health effects in both community and occupational health settings. Specifically, we wanted to find out if new evidence has emerged since the previous review to strengthen and confirm its conclusions. MATERIAL AND METHODS: Two electronic databases (Medline and Embase) and bibliographies were searched for studies reporting on health outcomes and/or exposure to bioaerosols from composting facilities published between 1 January 2014 and 15 June 2018. Identification of relevant articles and data extraction was undertaken and studies were assessed for risk of bias. RESULTS: 23 studies met the inclusion criteria (15 exposure studies, 4 health studies, 4 health and exposure studies (one of which used an exposure proxy)). The majority of studies were conducted in occupational settings, and over short time periods. Some progress has been made in the characterisation of bioaerosol emissions from these composting facilities, with the application of molecular-based methods. Whilst the latest health studies do not rely solely on subjective self-reported measures of health status but include more objective health measures, these studies were almost exclusively carried out in compost workers and were characterised by profound methodological limitations. Only one community health study was identified and used a proxy measure of bioaerosol exposure. CONCLUSIONS: Although this review identified an additional 23 studies since the earlier review, the conclusions remain largely unchanged. Given the absence of any consistent evidence on the toxicity of bioaerosols from composting facilities, there is insufficient evidence to provide a quantitative comment on the risk to nearby residents from exposure to compost bioaerosols. To improve risk assessment and to best advise on risk management, it is important to ensure that the research recommendations outlined in this review are addressed.


Assuntos
Aerossóis/análise , Microbiologia do Ar , Poluentes Atmosféricos/análise , Compostagem , Exposição Ambiental/análise , Aerossóis/toxicidade , Poluentes Atmosféricos/toxicidade , Animais , Humanos , Saúde Ocupacional , Saúde Pública
11.
Toxicol Res (Camb) ; 7(5): 760-770, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30310654

RESUMO

We have previously shown that in addition to its widely recognised cardiotoxicity, the chemotherapeutic doxorubicin (DOX) is able to induce transcriptional, microRNA (miRNA) and DNA methylation changes in the mouse testis. These changes perturb pathways involved in stress/cell death and survival and testicular function and lead to germ cell loss and reproductive organ damage. Here, we further investigated the differential miRNA expression induced by DOX in mouse spermatogonial (GC1), Leydig (TM3) and Sertoli (TM4) cell lines in vitro. We began by performing cell cycle analysis of the three mouse testicular cell lines to evaluate their sensitivity to DOX and thus select suitable doses for miRNA profiling. In keeping with our in vivo data, the spermatogonial cell line was the most sensitive, and the Sertoli cell line the most resistant to DOX-induced cell cycle arrest. We then further demonstrated that each cell line has a distinct miRNA profile, which is perturbed upon treatment with DOX. Pathway analysis identified changes in the miRNA-mediated regulation of specialised signalling at germ-Sertoli and Sertoli-Sertoli cell junctions following treatment with DOX. Amongst the most significant disease categories associated with DOX-induced miRNA expression were organismal injury and abnormalities, and reproductive system disease. This suggests that miRNAs play significant roles in both normal testicular function and DOX-induced testicular toxicity. Comparison of our in vitro and in vivo data highlights that in vitro cell models can provide valuable mechanistic information, which may also help facilitate the development of biomarkers of testicular toxicity and high-throughput in vitro screening methods to identify potential testicular toxicants.

12.
Ann Glob Health ; 84(3): 306-329, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30835380

RESUMO

BACKGROUND: There is increasing evidence of a link between environmental pollution and preventable diseases in developing countries, including Thailand. Economic development has generated several types of pollution that can affect population health. While these environmental health effects can be observed throughout life, pregnant women and children represent particularly vulnerable and sensitive groups. METHODS: The published epidemiological literature investigating environmental chemical exposure in Thai children was reviewed, highlighting those that investigated associations between exposure and subsequent health outcomes. RESULTS: The majority of the Thai epidemiological studies on environmental health in children were cross-sectional in design, with some demonstrating associations between exposure and outcome. The three main types of chemical exposure in Thai children were pesticides, heavy metals, and air pollution, which resulted from agricultural activities in countryside areas, industrial zones (both registered and unregistered establishments), mining, and traffic in inner cities. Major health outcomes included detrimental effects on cognitive function and cancer risk. Pesticide exposure was focused on, but not limited to, agricultural areas. The success of the Thai environmental policy to introduce lead-free petrol can be demonstrated by the decline of mean blood lead levels in children, particularly in urban areas. However, unregistered lead-related factories and smelters act as hidden sources. In addition, there is increasing concern, but little acknowledgement, about the effects of chronic arsenic exposure related to mining. Lastly, air pollution remains a problem in both dense city populations due to traffic and in rural areas due to contamination of indoor air and house dust with heavy metals, endotoxins and other allergens. CONCLUSIONS: The increasing number of published articles demonstrates an improved awareness of children's environmental health in Thailand. Chemical hazards, including the improper use of pesticides, environmental contamination with heavy metals (lead and arsenic), and air pollution in inner cities and indoor air, continue to be growing issues.


Assuntos
Saúde da Criança , Exposição Ambiental/efeitos adversos , Saúde Ambiental , Criança , Saúde da Criança/legislação & jurisprudência , Saúde da Criança/normas , Saúde da Criança/tendências , Países em Desenvolvimento , Exposição Ambiental/legislação & jurisprudência , Exposição Ambiental/prevenção & controle , Exposição Ambiental/estatística & dados numéricos , Saúde Ambiental/legislação & jurisprudência , Saúde Ambiental/métodos , Saúde Ambiental/normas , Saúde Ambiental/tendências , Poluentes Ambientais/toxicidade , Política de Saúde , Humanos , Tailândia
13.
Part Fibre Toxicol ; 14(1): 45, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157272

RESUMO

Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Asma/induzido quimicamente , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanoestruturas/efeitos adversos , Hipersensibilidade Respiratória/induzido quimicamente , Animais , Asma/imunologia , Asma/fisiopatologia , Citocinas/imunologia , Humanos , Mediadores da Inflamação/imunologia , Pulmão/imunologia , Pulmão/fisiopatologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/fisiopatologia , Medição de Risco , Fatores de Risco
14.
Regul Toxicol Pharmacol ; 82: 127-139, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27663666

RESUMO

The European Centre for the Ecotoxicology and Toxicology of Chemicals (ECETOC) organised a workshop to discuss the state-of-the-art research on noncoding RNAs (ncRNAs) as biomarkers in regulatory toxicology and as analytical and therapeutic agents. There was agreement that ncRNA expression profiling data requires careful evaluation to determine the utility of specific ncRNAs as biomarkers. To advance the use of ncRNA in regulatory toxicology, the following research priorities were identified: (1) Conduct comprehensive literature reviews to identify possibly suitable ncRNAs and areas of toxicology where ncRNA expression profiling could address prevailing scientific deficiencies. (2) Develop consensus on how to conduct ncRNA expression profiling in a toxicological context. (3) Conduct experimental projects, including, e.g., rat (90-day) oral toxicity studies, to evaluate the toxicological relevance of the expression profiles of selected ncRNAs. Thereby, physiological ncRNA expression profiles should be established, including the biological variability of healthy individuals. To substantiate the relevance of key ncRNAs for cell homeostasis or pathogenesis, molecular events should be dose-dependently linked with substance-induced apical effects. Applying a holistic approach, knowledge on ncRNAs, 'omics and epigenetics technologies should be integrated into adverse outcome pathways to improve the understanding of the functional roles of ncRNAs within a regulatory context.


Assuntos
RNA não Traduzido/genética , Testes de Toxicidade/métodos , Toxicologia/métodos , Animais , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Genômica , Humanos , Modelos Animais , RNA não Traduzido/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo
15.
Crit Rev Toxicol ; 46(8): 676-700, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27278298

RESUMO

Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection.


Assuntos
Exposição Ambiental , Poluentes Ambientais/toxicidade , Epigênese Genética/efeitos dos fármacos , Animais , Humanos , Saúde Pública , Medição de Risco
16.
Toxicol Res (Camb) ; 5(4): 1229-1243, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090428

RESUMO

Epigenetic processes play a major role in normal mammalian development, particularly during gametogenesis and early embryogenesis. Thus, perturbation of epigenetic processes in the testis by xenobiotics could have a major impact on testicular function and fertility, and potentially affect the development and health of subsequent generations. There has been substantial research into the epigenetic toxicity of environmental exposures over the last decade. However, few studies have focussed on pharmaceutical drugs, which due to the nature of their use are typically found at much higher concentrations within exposed individuals than environmental chemicals. Here, we investigated genome-wide changes in testicular mRNA transcription, microRNA expression and DNA methylation to assess the contribution of epigenetic mechanisms to the testicular toxicity induced by doxorubicin (DOX) as a representative, widely used and well-characterised anti-cancer drug. We demonstrated that DOX is able to induce transcriptional, microRNA and DNA methylation changes, which perturb pathways involved in stress/cell death and survival and testicular function and lead to germ cell loss and reproductive organ damage. This identified potential novel mechanisms of DOX-induced testicular toxicity for further focussed investigations. Such work is required to fully assess the role of epigenetics in toxicity, determine whether single and/or multigenerational epigenetic toxicity is a real public health concern, and begin to develop and incorporate relevant epigenetic endpoints into regulatory toxicology.

17.
J Clin Endocrinol Metab ; 99(3): 871-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24423290

RESUMO

INTRODUCTION: High anandamide (AEA) concentrations are detrimental for implantation and early pregnancy. Progesterone, essential for pregnancy, may keep AEA levels low by increasing fatty acid amide hydrolase (FAAH) expression. Here the effect of RU486, a P4 antagonist used to initiate medical termination of pregnancy (MTOP), on plasma AEA concentrations and the endocannabinoid system (ECS) in trophoblasts was examined. OBJECTIVE: Quantification of the endocannabinoid concentrations and expression of the ECS in trophoblast tissue of MTOP women and women undergoing surgical termination of pregnancy (STOP). DESIGN AND SETTING: A prospective study at the University Hospitals of Leicester National Health Service Trust. PATIENTS AND METHODS: AEA, N-oleoylethanolamine (OEA), and N-palmitolylethanolamine (PEA) concentrations in trophoblast tissues and blood samples from 68 MTOP and 15 STOP were analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry. ECS expression was determined by immunohistochemistry, quantitative RT-PCR, and Western blotting. RESULTS: Concentrations of AEA, OEA, and PEA were significantly higher in MTOP than STOP trophoblasts (P = .0062, P = .016, and P = .0029, respectively), whereas no significant differences in plasma AEA, OEA, and PEA concentrations were observed even though plasma AEA and PEA concentrations were significantly (P = .005 and P = .025, respectively) increased the day after RU486 administration in women undergoing MTOP. Changes in the immunohistochemical densities of the AEA modifying enzymes N-acylphophatidylethanolamine-phospholipase D (NAPE-PLD) and FAAH, and the cannabinoid receptors (CB1 and CB2) were observed with increased NAPE-PLD, FAAH, and CB1 expression seen in the trophoblast of MTOP patients. CONCLUSIONS: Trophoblast after MTOP demonstrated high AEA concentrations with increased expression of NAPE-PLD, FAAH, and CB1.


Assuntos
Aborto Induzido , Endocanabinoides/metabolismo , Mifepristona/administração & dosagem , Primeiro Trimestre da Gravidez , Trofoblastos/efeitos dos fármacos , Aborto Induzido/métodos , Adolescente , Adulto , Estudos de Casos e Controles , Endocanabinoides/sangue , Feminino , Humanos , Gravidez , Primeiro Trimestre da Gravidez/sangue , Primeiro Trimestre da Gravidez/efeitos dos fármacos , Primeiro Trimestre da Gravidez/metabolismo , Trofoblastos/metabolismo , Adulto Jovem
18.
Biochem J ; 453(1): 71-82, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23586759

RESUMO

Recent work has demonstrated the importance of post-transcriptional gene regulation in toxic responses. In the present study, we used two rat models to investigate mRNA translation in the liver following xenobiotic-induced toxicity. By combining polysome profiling with genomic methodologies, we were able to assess global changes in hepatic mRNA translation. Dio3 (iodothyronine deiodinase type III) was identified as a gene that exhibited specific translational repression and had a functional role in a number of relevant canonical pathways. Western blot analysis indicated that this repression led to reduced D3 (the protein expressed by Dio3) levels, enhanced over time and with increased dose. Using Northern blotting techniques and qRT-PCR (quantitative reverse transcription-PCR), we confirmed further that there was no reduction in Dio3 mRNA, suggesting that translational repression of Dio3 is an important determinant of the reduced D3 protein expression following liver damage. Finally, we show that drug-induced hepatotoxicity appears to cause localized disruptions in thyroid hormone levels in the liver and plasma. We suggest that this leads to reduced translation of Dio3 mRNA, which results in decreased D3 production. It may therefore be possible that this is an important mechanism by which the liver can, upon early signs of damage, act rapidly to maintain its own energy equilibrium, thereby avoiding global disruption of the hypothalamic-pituitary-thyroid axis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Iodeto Peroxidase/genética , Fígado/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação da Expressão Gênica , Iodeto Peroxidase/biossíntese , Fígado/patologia , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Tioacetamida , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
19.
Reprod Toxicol ; 39: 63-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23612449

RESUMO

From 15 to 17 June 2011, a dedicated workshop was held on the subject of in vitro models for mammalian spermatogenesis and their applications in toxicological hazard and risk assessment. The workshop was sponsored by the Dutch ASAT initiative (Assuring Safety without Animal Testing), which aims at promoting innovative approaches toward toxicological hazard and risk assessment on the basis of human and in vitro data, and replacement of animal studies. Participants addressed the state of the art regarding human and animal evidence for compound mediated testicular toxicity, reviewed existing alternative assay models, and brainstormed about future approaches, specifically considering tissue engineering. The workshop recognized the specific complexity of testicular function exemplified by dedicated cell types with distinct functionalities, as well as different cell compartments in terms of microenvironment and extracellular matrix components. This complexity hampers quick results in the realm of alternative models. Nevertheless, progress has been achieved in recent years, and innovative approaches in tissue engineering may open new avenues for mimicking testicular function in vitro. Although feasible, significant investment is deemed essential to be able to bring new ideas into practice in the laboratory. For the advancement of in vitro testicular toxicity testing, one of the most sensitive end points in regulatory reproductive toxicity testing, such an investment is highly desirable.


Assuntos
Alternativas aos Testes com Animais , Testículo/citologia , Testes de Toxicidade/métodos , Animais , Técnicas de Cultura de Células , Humanos , Masculino , Engenharia Tecidual
20.
J Clin Endocrinol Metab ; 97(8): 2827-35, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22701012

RESUMO

CONTEXT: Ectopic pregnancy is associated with significant morbidity and mortality, but the molecular mechanisms underlying this condition remain unclear. Although the endocannabinoids, N-arachidonoylethanolamine (anandamide), N-oleoylethanolamine, and N-palmitoylethanolamine, are thought to play a negative role in ectopic pregnancy, their precise role(s) within the fallopian tube remains unclear. Anandamide activates cannabinoid receptors (CB1 and CB2) and, together with its degrading [e.g. fatty acid amide hydrolase (FAAH)] and synthesizing enzymes (e.g. N-acyl-phosphatidylethanolamine-specific phospholipase D), forms the endocannabinoid system. High anandamide levels are associated with tubal arrest of embryos in mice and may have a similar role in women. OBJECTIVE: The aims were to quantify the levels of the endocannabinoids and evaluate the expression of the modulating enzymes and the cannabinoid receptors in fallopian tubes of women with ectopic pregnancy compared to those of nonpregnant women. DESIGN AND SETTING: We conducted a prospective study at the University Hospitals of the Leicester National Health Service Trust. PARTICIPANTS AND METHODS: Fallopian tubes collected from women with ectopic pregnancy and nonpregnant women with regular menstrual cycles were used for quantification of endocannabinoids by ultra-HPLC tandem mass spectrometry, were fixed in formalin for immunohistochemistry, and had RNA extracted for RT-quantitative PCR or protein extracted for immunoblotting. RESULTS: Anandamide, but not N-oleoylethanolamine and N-palmitoylethanolamine, levels were significantly higher in ectopic fallopian tubes. Endocannabinoid levels from isthmus to ampulla were not significantly different. Cannabinoid receptors and endocannabinoid modulating enzymes were localized in fallopian tube epithelium by immunohistochemistry and showed reduced CB1 and FAAH expression in ectopic pregnancy. CONCLUSION: High anandamide levels and reduced expression of CB1 and FAAH may play a role in ectopic implantation.


Assuntos
Amidoidrolases/fisiologia , Ácidos Araquidônicos/análise , Tubas Uterinas/metabolismo , Alcamidas Poli-Insaturadas/análise , Gravidez Ectópica/metabolismo , Receptor CB1 de Canabinoide/fisiologia , Adulto , Amidoidrolases/análise , Amidoidrolases/genética , Endocanabinoides , Tubas Uterinas/química , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Gravidez , RNA Mensageiro/análise , Receptor CB1 de Canabinoide/análise , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...